3 research outputs found

    Optimised soft-core processor architecture for noise jamming

    Get PDF
    M.Ing. (Electrical & Electronic Engineering)Abstract: Noise jamming is a traditional electronic counter measure (ECM) that existed since the establishment of electronic warfare (EW). Traditional noise jamming techniques have been shown to be failing when interacting with intelligent Radar systems such as pulse Doppler radar. Hence there is a need to introduce new noise jamming techniques with digital architecture that will provide improved performance against smart pulse Doppler radar. The work is undertaken to investigate the feasibility of digitizing noise jamming. It focuses on analog-to-digital conversion optimization towards noise jamming architecture, as a result digitization will allow for an opportunity for adaptation of intelligent processing that previously didn’t exist. In this dissertation, certain contributions to the field of noise jamming were made by introducing state of the art odd/even order sampling architecture by proving four case studies. Case study 1 experimentally investigates sample frequency behaviour. Case study 2 uses simulation to investigate step-size and dynamic range behaviour. Case study 3 uses FPGA implementation and SNR to investigate quantization error behaviour. Case study 3 also uses SNR to investigate superiority of proposed odd/even order sampling. Lastly case study 4 uses field measurements, FPGA implementation and SNR to investigate practical implementation of digitized noise jamming. The main contribution is concerned with an architecture that digitizes, reduces sample frequency, optimizes digital resource utilization while reducing noise jamming signal-to-noise ratio. The approach evaluates and empirically compares three sampling techniques from lecture Mod-Δ, Mod-Δ (Gaussian) and Mod-Δ (Sinusoidal) with proposed novel odd/even order sampling. Sampling techniques are evaluated in terms of quantization error, mean square error and signal-to-noise ratio. It was found that the proposed novel odd/even order sampling achieved most case SNR performance of 6 dB in comparison to 18 dB for Mod-Δ. Sampling frequency findings indicated that the proposed novel odd/even order sampling had achieved sampling frequency of 2 kHz in comparison to 8 kHz from traditional 1st order sigma-delta. Dynamic range findings indicated that the proposed odd/even order sampling achieved a dynamic range of 1.088 volts/ms in comparison to 1.185 volts/ms from traditional 1st order sigma-delta. Findings have indicated that the proposed odd/even order sampling has superior SNR and sampling frequency..

    Odd/Even order sampling soft-core architecture towards mixed signals Fourth Industrial Revolution (4IR) Applications

    Get PDF
    Abstract : Digitization is at the center of fourth industrial revolution (4IR) with previously analog systems being digitized through an analog-to-digital converter. In addition, 4IR applications such as fifth generation (5G) Cellular Networks Technology and Cognitive Electronic Warfare (EW) at some point interface digitally through an analog-to-digital converter. Efficient use of digital resources such as memory, largely depends on the signal sampling design of analog-to-digital converters. Existing even order sampling has been found to perform better than traditional sampling techniques. Research on the efficiency of a digital interface with a 4IR platform is still in its infancy. This paper presents a performance study of three sampling techniques: the proposed new and novel odd/even order sampling architecture, existing Mod-∆, and traditional 1st order delta-sigma, to address this. Step-size signal-to-noise (SNR), dynamic range, and sampling frequency are also studied. It was found that the proposed new and novel odd/even order sampling achieved an SNR performance of 6 dB in comparison to 18 dB for Mod-∆. Sampling frequency findings indicated that the proposed new and novel odd/even order sampling achieved a sampling frequency of 2 kHz in comparison to 8 kHz from a traditional 1st order sigma-delta. Dynamic range findings indicated that the proposed odd/even order sampling has achieved a dynamic range of 1.088 volts/ms in comparison to 1.185 volts/ms from a traditional 1st order sigma-delta. Findings have indicated that the proposed odd/even order sampling has superior SNR and sampling frequency performances, while the dynamic range is reduced by 8%

    Odd/Even Order Sampling Soft-Core Architecture Towards Mixed Signals Fourth Industrial Revolution (4IR) Applications

    No full text
    Digitization is at the center of fourth industrial revolution (4IR) with previously analog systems being digitized through an analog-to-digital converter. In addition, 4IR applications such as fifth generation (5G) Cellular Networks Technology and Cognitive Electronic Warfare (EW) at some point interface digitally through an analog-to-digital converter. Efficient use of digital resources such as memory, largely depends on the signal sampling design of analog-to-digital converters. Existing even order sampling has been found to perform better than traditional sampling techniques. Research on the efficiency of a digital interface with a 4IR platform is still in its infancy. This paper presents a performance study of three sampling techniques: the proposed new and novel odd/even order sampling architecture, existing Mod-∆, and traditional 1st order delta-sigma, to address this. Step-size signal-to-noise (SNR), dynamic range, and sampling frequency are also studied. It was found that the proposed new and novel odd/even order sampling achieved an SNR performance of 6 dB in comparison to 18 dB for Mod-∆. Sampling frequency findings indicated that the proposed new and novel odd/even order sampling achieved a sampling frequency of 2 kHz in comparison to 8 kHz from a traditional 1st order sigma-delta. Dynamic range findings indicated that the proposed odd/even order sampling has achieved a dynamic range of 1.088 volts/ms in comparison to 1.185 volts/ms from a traditional 1st order sigma-delta. Findings have indicated that the proposed odd/even order sampling has superior SNR and sampling frequency performances, while the dynamic range is reduced by 8%
    corecore